

取扱説明書 絶縁コンダクターシステム U15

目次	ページ	目次 ペー	-
1 安全に関するご注意		13 トランスファーガイド	10
2 運搬及び保管		13.1 トランスファーガイド US15T	10
3 必要工具	2	13.1.1 トランスファーガイドの配置	11
4 システムレイアウト	3	13.1.2 トランスファーガイド用アンカーバー	
5 サポートブラケットの取付	3	BFU の取付······	11
6 ハンガーの取付	4	13.2 トランスファーガイド US15・USE15 ······	12
6.1 コンパクトハンガーKA	4	14 トランスファーファンネル	12
6.2 コンパクトハンガーKH	4	15 端末キャップ	13
7 コンダクターレールとボルト式ジョ	イントの取付・5	16 コンダクターレールの曲げ	
8 短い区画の準備	5	17 集電子	14
9 エクスパンション区画	6	17.1 集電子 KSFU・KES 用の取付 ···········	14
10 固定点	7	17.2 集電子 KST15~KDSTLU120 の取付…	
11 給電端子	8	18 立上げ	15
11.1 ボルト式ジョイントでの給電站		19 保守点検	
11.2 中間給電端子 ·····		19.1 コンダクターレールの点検	15
11.3 給電端子の取付		19.2 集電子の点検	15
12 断路			
12.1 断路区画 · · · · · · · · · · · · · · · · · · ·			
12.2 断路組立品	9		

1 安全に関するご注意

ご使用の前にこの取扱説明書をよくお読みの上、お使いください。

ここに示した注意事項は安全に関する重要な内容を記載していますので必ず守ってください。

この取扱説明書は保管し、必ず最終使用者まで内容をお伝えください。

特に重要な内容については次のシンボルと表示をしています。

感電による危険!

誤った取扱をすると、人が死亡または重傷を負う可能性が想定される内容を記載しています。

危険!

誤った取扱をすると、人が傷害を負う可能性が想定される内容を記載しています。

注意!

製品などの物的損害の発生が想定される内容を記載しています。

■この指差シンボルは有益な追加情報やヒントを記載しています。

施工は次の事項を含む有資格者が行ってください。施工者は電気工事士の資格が必要です。

- ▶ 製品の保守作業に精通している。
- ▶ 取扱説明書をよく読み、内容を理解している。
- ▶ 危険防止の規制を知っている。
- ▶ 応急処置のトレーニングを受けている。

取扱説明書をよくお読みください!

安全に関するご注意を必ず守ってください!

施工作業前にこの取扱説明書をよくお読みの上、内容をしっかり守ってください。

感電による危険!

施工作業を始める前に、必ず電源を切った状態を確認してください。接続が正しくない場合には感電 の危険があります。常に接続の前には電源を切って、電源を入れる前には安全であることを確認して ください。

誤った使用による危険!

取扱説明書やカタログなどに記載されていない製品の改造は絶対に行わないでください。

挟まれる恐れ!

コンダクターレールの配置では、挟まれる恐れを避けるため、固定部品と可動部品間(コンダクター レール、コレクターと牽引アーム間)に 0.5m 以上の距離を取ってください。

2 運搬及び保管

コンダクターレールの運搬や保管はパッケージ記載の重量を確認してください。 コンダクターレールの保管は必ず平らな面に置いてください。

3 必要工具

絶縁コンダクターレールの取付に下記の工具が必要になります(システム構成により必要工具は異なります)。 標準工具:

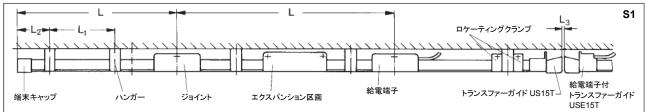
ドライバー・スパナ・トルクレンチ・ペンチ・やすり・金のこ(切断する場合)等

専用工具:

- 穴あけ治具 BS15(現場で端末キャップやトランスファーガイド取付の場合に必要)
- 穴あけツール HST15(現場でトランスファーガイドや断路組立品を取付ける場合に必要)
- 曲げツール BVU15 およびフィラーロッド FU15(現場でコンダクターレールを曲げる場合に必要)

4 システムレイアウト

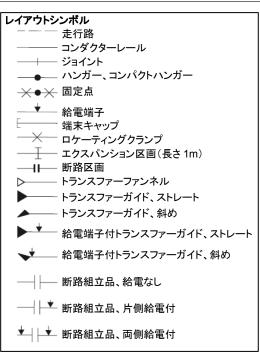
損傷の恐れ!専用図面を守ってください。


次の施工図面は一般的な推奨施工図の概要を示しています。案件ごとのレイアウトを記載してある 専用図面を必ず守ってください。

最初に曲げ部や乗り移り部を取付けてください。

給電部は引込電源の近くに配置してください。

接続ケーブルはコンダクターシステムの伸縮に対して妨げないようにしてください。


L=コンダクターレールの標準長さ:6m

L1=最大サポート間隔(表 1 参照)

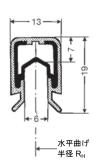
L₂=最大許容突出長さ:150mm

L3=トランスファーガイド間の空隙(乗り移り、リフトのため)

- ストレートトランスファーガイド:6mm - 斜めトランスファーガイド:10mm

5 サポートブラケット

▶ サポートブラケットを取付けます。

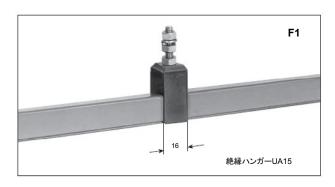


サポートブラケットは走行路に対して並行で正しい角度で取付けてください。

最大サポート間距離は施工図面または表 1 に従ってください。

表 1:最大サポート間隔

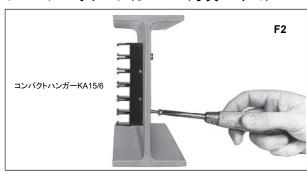
	女 二 扱バ ノイ	i i i i i i i i i i i i i i i i i i i
	サポート間隔 L1	
	直線部、内側または外側曲げ、	水平曲げ R _H ≤5m(推奨)
	水平曲げ R _H >5m(推奨)	
シングル集電子	1000mm	500mm
ダブル集電子(KDST)	800mm	400mm



6 ハンガーの取付

損傷の恐れ!

コンダクターレールはクレーン走行路に対してまっすぐ平行に取付けてください。下記の作業中ハン ガーは適切に揃えてください。



- ▶ 絶縁ハンガー(写真 F1)、レールホルダー付イン シュレータまたはコンパクトハンガーをサポートブラ ケットに取付けます。
- ▶ レールホルダー部にコンダクターレールをはめ込み ます。



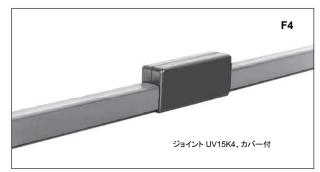
■コンダクターレールはハンガー内で容易に動 くようにします。必要な場合は、コンダクター レールの長さ方向の伸縮を妨げないようにハ ンガーやレールホルダーを再調整します。

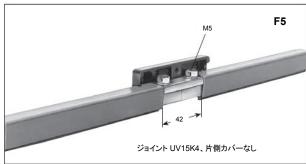
6.1 コンパクトハンガーKA(写真 F2、F3)

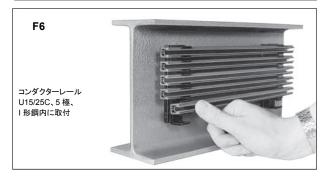
- ▶ コンパクトハンガーの取付ねじ位置に M5 ねじ用取 付穴(貫通穴)を開けます。
- ▶ コンパクトハンガーをサポートブラケットにねじ止め します。

6.2 コンパクトハンガーKH

コンパクトハンガーKH は取付ブラケットに挿入します。


- ▶ 走行路に対して正しい角度で取付ブラケットを溶接またはねじ止めします。
- ▶ 取付ブラケットにコンパクトハンガーを差込み、ねじで固定します。


■マンパクトハンガーと取付ブラケットが正しく揃っていることを確認してください。


- 4 -

7 コンダクターレールとボルト式ジョイントの取付

コンダクターレール間の接続はボルト式ジョイント (写真F4、F5)で行います。

ボルト式ジョイントとコンダクターレール間 の接触面は適切に通電できるようにきれ いにしてください。接触面は専用の接点グ リスを薄く塗布してください。

ジョイント接続後充電部に触れられないよ うに保護カバーをしっかり取り付けてくださ L1

コンダクターレールの両端はジョイント用の加工がさ れています。現場で短い区画が必要な場合は「8 短い区画の準備」に従って加工をしてください。

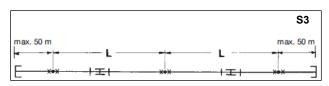
取付手順

- ▶ 取付けられているコンダクターレールにジョイント を半分差込みます。
- ▶ 次のレールをレールホルダーにはめこみます (写真F6)。ツメの部分がレールの溝にカチッと はまっていることを確認してください。
- ▶ ジョイントの片側に取付けるコンダクターレール を止まるまで差し込みます。
- ▶ ジョイントを締付けます。最大締付トルクは
- ▶ 横からコンダクターレールをしっかりと覆うように 保護カバーをジョイントにかぶせます。それぞれ の保護カバーを係合するまで押込みます。

8 短い区画の準備

現場で短い区画を加工する時は次のように作業します。

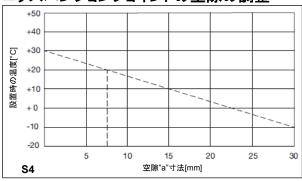
- ▶ 必要なコンダクターレールの長さLのところに印をつけ、印をつけたところをのこぎりで切断し、バリを取り除 きます。
- ▶ 導体から絶縁ハウジングを引出し、絶縁ハウジングを42mm短い所で切断し、バリを取り除きます。
- ▶ コンダクターレールの導体が絶縁ハウジングから両端それぞれ同じように(21mm)出るように絶縁ハウジン グを押戻します(写真F5)。


9 エクスパンション区画

エクスパンション区画は工場であらかじめ組立てた長さ1mの区画です。

エクスパンション区画は次の場合に必要です。

- 100mを超える長さの直線システム。
- 2つの曲げ・切り換え・固定点間の長さが20mを超えるシステム(図S2)。



2つのエクスパンション区画間の中央またはエクスパンション区画とシステム端末間に固定点を設けてください (図S3)。

エクスパンション区画の最大伸縮寸法は30mmです。 エクスパンション区画の伸縮長さから適用できる最大の システム長さLは最大温度変化Δtによります(表2)。

エクスパンションジョイントの空隙の調整

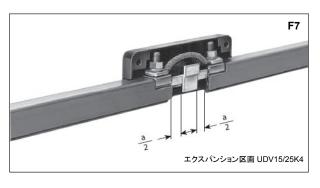


表2:エクスパンション区画最大適用長さ

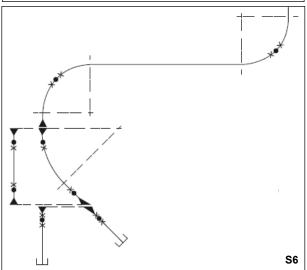
温度変化Δt	最大長さし	温度変化Δt	最大長さし
20°C	88m	40°C	44m
30°C	58m	50°C	35m

全体の空隙(a)およびエクスパンション区画の調整 は図S4に従って次のように行います。

- ▶ 空隙0mm上に最高使用温度を、空隙30mm上に最低使用温度を取ります。
- ▶ 両方の点を直線で結びます。
- ▶ 図の中で設置する場所の周囲温度を水平に伸ばします。
- ▶ これらの二つの直線の交点を下したところが調整する全体の空隙(a)になります。

例:


最高使用温度=30°C 最低使用温度=-10°C Δt=40°C 設置時の温度=20°C 空隙a寸法=8mm


► エクスパンション区画の空隙aの寸法を写真F7 のように半分ずつに調整し取付けます。

10 固定点

ロケーティングクランプはコンダクターレールが長手方向に動かないように固定するために使用します。 固定点はレールホルダーまたはハンガーの左右両側にロケーティングクランプをそれぞれ1個ずつ使用して形成します(写真F8)。

固定点は次の位置に設けます。

- 直線システムではシステムの中央(図S5)。
- 2つのエクスパンション区画の間、またはエクスパンション区画と端末の間(図S3、6ページ)。
- 曲げ部(図S6)
- レールが分断されているところ、例えば、切り換えやリフトのようにトランスファーファンネルおよびトランスファーガイドを使用しているところは、図S6によります。
- ▶ ロケーティングクランプはねじで締付けます。

取付後、コンダクターレールの溝幅を確認してください。トランスファーガイド間の空隙がストレートで6mm以下、斜めで10mm以下になっていることを確認してください。

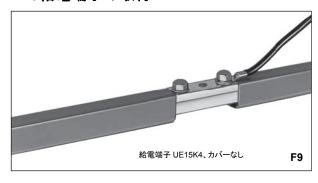
11 給電端子

できるだけ給電端子はボルト式ジョイントの代わりに電源の近くに取付けてください。

接触面は「7 コンダクターレールとボルト式ジョイントの取付」(5ページ参照)に従って取扱ってください。 給電端子をジョイント部に設けられない場合は、絶縁ハウジングの加工が必要です。「11.2 中間給電端子の 準備」(8ページ)を参照ください。

■マレール間距離が 18mm の配置の場合は、給電端子 UEG をずらして配置してください。

接続ケーブルは力がかからないようにし、集電子の動きや温度変化によるコンダクターレールの伸縮 を妨げないようにしてください。


11.1 ジョイントでの給電端子の準備

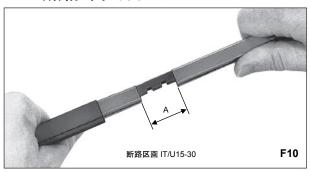
追加の加工をすることなしに給電端子を取付けることができます。

11.2 中間給電端子の準備

- ▶ コンダクターレールの給電端子を取付けるところに印をつけます。
- ▶ コンダクターレールから絶縁ハウジングを引出し、印の付けた位置で絶縁ハウジングを切断します。
- ▶ 両方の絶縁ハウジングの切断したところからそれぞれ21mmずつ(全体で42mm)短く切断し、バリを取りま す。
- ▶ コンダクターレール導体に接続ボルト付の給電端子を挿入します。
- ▶ 絶縁ハウジングを再び導体に挿入します。

11.3給電端子の取付

- ▶ コンダクターレールをレールホルダーやハンガー に挿入します(給電端子の近くは避けてくださ い)。
- ▶ 給電端子UE15K4では、接続ケーブルに接続ボ ルトM5用の圧着端子を取付けます(写真F9)。 各接続ボルトの最大接続ケーブルサイズは 6mm²です。
- ▶ 給電端子UEG15K4では、付属の接続穴が2か 所の専用圧着端子を接続ケーブルに取付けま す。圧着端子のケーブル接続用の内径Φは 8.2mmです。
- ▶ 接続ケーブルの圧着端子を給電端子にねじ止 めします。
- ▶ 保護カバーのケーブル引出箇所を取除きます。
- ▶ 保護カバーをコンダクターレールにかぶせて固 定します。
- ▶ 給電端子近くのコンダクターレールをレールホル ダーやハンガーに挿入します。
- ▶ 接続ケーブルに力がかからないようにケーブル を固定してください。



12 断路

コンダクターレールは断路区画または断路組立品により電気的に分離されます。この区画はご指定の図面により工場で取付けますが、施工中に組込むこともできます。

■ 断路部中心から両側200mm以内にそれぞれハンガーを設けてください。

12.1 断路区画(写真F10)

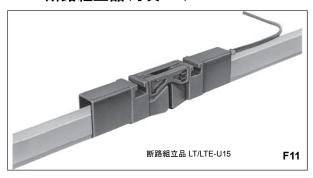

- ▶ 絶縁ハウジングからコンダクターレール導体を引出し、断路区画の絶縁ピース長さA(表3)の位置に印をつけます。
- ▶ 印の付けた位置でコンダクターレール導体を切断します。
- ▶ 絶縁ピース長さAの部分を除いた両方の短くした コンダクターレール導体のバリを取ります。

表3:絶縁ピース長さA

形式	絶縁ピース長さA[mm]
IT/U15-5	5
IT/U15-15	15
IT/U15-30	30
IT/U15-90	90

▶ 短くした導体間に絶縁ピースを挿入し、絶縁ハウジングに挿入します(写真F10)。

12.2 断路組立品(写真F11)

- ▶ コンダクターレールの断路組立品を設ける位置 に印をつけます。
- ▶ 印の付けた位置でコンダクターレールを切断します。
- ▶ 両方のコンダクターレールの切断したところから それぞれ21.5mmずつ(全体で43mm)短く切断 し、バリを取ります。
- ▶ 切断したコンダクターレールの端を「13.1 トランスファーガイドUS15T」(10ページ)に従って加工し、トランスファーガイドを取付けます。
- ▶ 取付けたトランスファーガイドを横方向に押込み、 連結部品で固定します。

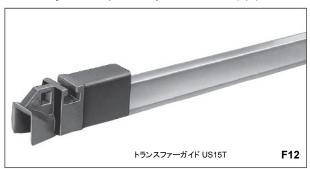
可能な組合せ:

── LT/LT-U15、給電なし

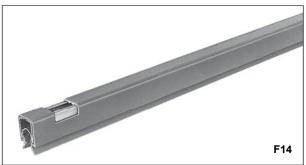
——**| -** LT/LTE-U15、給電端子1個(片側)付

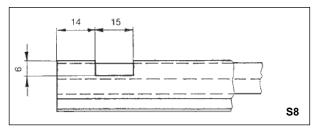
→ I → LTE/LTE-U15、給電端子2個(両側)付

13 トランスファーガイド

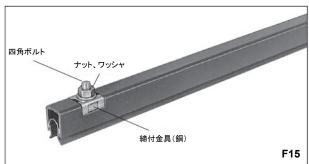

トランスファーガイドは、乗り移り・リフト・コンダクターレールの取外しに使用します。

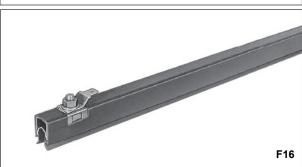
接触防止のための端末キャップとして使用することもできます。

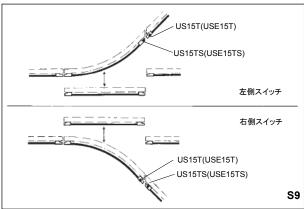

トランスファーガイドには次の2種類があります。

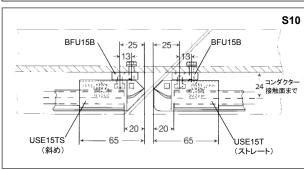

- a) 形式US15T·US15TS·USE15T·USE15TS
- 用途:横配置の自動搬送装置(斜め形状のUS15TS・USE15TSは吊下げ配置には使用できません)。
- トランスファーガイド用アンカーバーBFUとともに使用し、固定点としても同時に使用します。エクスパンション区画を設けた時に必要になることがよくあります。
- b) 形式US15·USE15
- 用途:横配置および吊下げ配置の直線走行路(斜め形状は設置後加工することにより可能です?)。
- 固定点としては同時に使用できません。

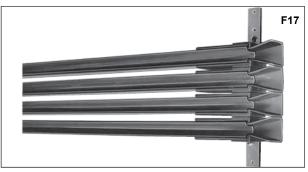
13.1 トランスファーガイドUS15T(写真F12)






取付手順:


■ コンダクターレールから絶縁ハウジングを約50mm引出し、穴あけツールHST15(写真F13)を使用して、絶縁ハウジングに角穴を開けます(写真F14、図S8)。


▶ 絶縁ハウジングの角穴に四角ボルトの頭を挿入し、コンダクターレールをスライドさせ、導体と絶縁ハウジングが揃うように戻します。

▶ 締付金具(銅)を上からボルトに入れ、ワッシャお よびナットで締付けます(写真F15)。最大締付ト ルクは2Nmです。

給電端子付きのトランスファーガイドや断路組立 品の場合は、付属の給電プラグ(6.3x0.8mm)を 締付金具とワッシャの間に入れ同様に締付けま す(写真F16)。

コンダクターレールの端の導体と絶縁ハ ウジングが同じ面になっておりことを確認 してください。

▶ トランスファーガイドをコンダクターレールにカ チッと係合するまで差込みます。

13.1.1 トランスファーガイドの配置(横配置)

ストレートのトランスファーガイドUS15T・USE15T は直線走行路に使用します。斜めのトランスファー ガイドUS15TS・USE15TSはそれぞれ斜めの区画 のところに使用します(図S9、S10)。

13.1.2 トランスファーガイド用アンカーバー BFUの取付

▶ 取付面にアンカーバーBFU用の取付穴位置の 印をつけます(図S10参照)。

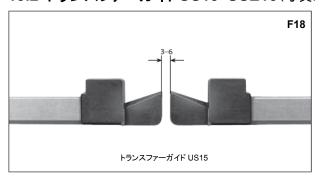
注:どんな場合でもトランスファーガイドが レール部分にはみ出さないようにしてくだ さい。

- ▶ 取付面の印をつけたところにM5用貫通穴を開け ます。
- ▶ アンカーバーBFUにトランスファーガイドを挿入 します(写真F15)。
- ▶ 取付面にアンカーバーBFUをねじ止めします。
- ▶ トランスファーガイド固定のためロッキングピンを 打込みます。

斜めのトランスファーガイドの場合、取付 ねじの頭が走行路の切断部にはみ出さな いようにしてください。

トランスファーガイドを取付ける場合、集電 子が通過するときに干渉しないようにコン ダクターレールの対向する端末が正確に 揃っていることを確認してください。

最大垂直・水平オフセット: +2mm トランスファーガイド間の空隙:


- ストレートの場合: 6mm

- 斜めの場合: 10mm

切り換えやリフトのある自動搬送装置で はコンダクターレールを取付ける前に揃っ ていることを確認してください。

13.2 トランスファーガイドUS15・USE15(写真F18)

- コンダクターレールの端を「15 端末キャップ」 (13ページ)に従って加工し、トランスファーガイド を取付けます。
- ▶ 給電端子がついている場合は6.3x0.8mmの給電プラグにケーブルを接続します。

トランスファーガイドを取付ける場合、集電子が通過するときに干渉しないようにコンダクターレールの対向する端末が正確に揃っていることを確認してください。

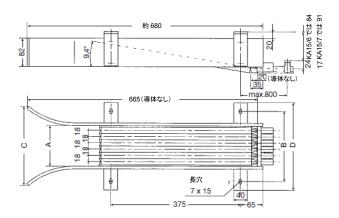
最大垂直・水平オフセット: ±2mm トランスファーガイド間の空隙: 6mm


14 トランスファーファンネル

コンダクターレールで長い距離を乗り移りする場合はトランスファーファンネルを使用してください。

トランスファーファンネル、集電子KSFU25用

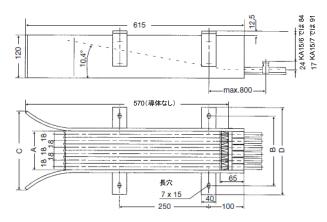
最大走行速度:100m/min。


形式	A寸法	B寸法	C寸法	D寸法
	[mm]	[mm]	[mm]	[mm]
EFTU15-2-KSFU	44	102	90	144
EFTU15-3-KSFU	62	120	108	162
EFTU15-4-KSFU	80	138	126	180
EFTU15-5-KSFU	98	156	144	198
EFTU15-6-KSFU	116	174	162	216
EFTU15-7-KSFU	134	192	180	234
EFTU15-8-KSFU	152	210	198	252

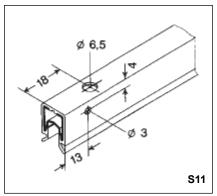
トランスファーファンネル、集電子KSTU30/55用

最大走行速度:120m/min。

形式	A寸法	B寸法	C寸法	D寸法
形式	A引法	D·小法	しり法	ロリ法
	[mm]	[mm]	[mm]	[mm]
EFTU15-2-KSTU	44	130	157	180
EFTU15-3-KSTU	62	148	175	198
EFTU15-4-KSTU	80	166	193	216
EFTU15-5-KSTU	98	184	211	234
EFTU15-6-KSTU	116	202	229	252
EFTU15-7-KSTU	134	220	247	270
EFTU15-8-KSTU	152	238	265	288



トランスファーファンネル、集電子KSTLU/KDSTLU用


最大走行速度:120m/min。

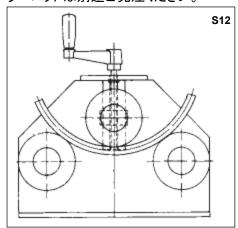
形式	A寸法	B寸法	C寸法	D寸法
	[mm]	[mm]	[mm]	[mm]
EFTU15-2-KDSTLU	36	122	148	172
EFTU15-3-KDSTLU	54	140	166	190
EFTU15-4-KDSTLU	72	158	184	208
EFTU15-5-KDSTLU	90	176	202	226
EFTU15-6-KDSTLU	108	194	220	244
EFTU15-7-KDSTLU	126	212	238	262
EFTU15-8-KDSTLU	144	230	256	280

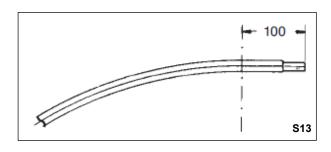
15 端末キャップ

端末キャップは人体の接触保護のためコンダクターレールの端末に、通常それぞれの必要なコンダクターレールに前もって工場で取付けられます。 部品で供給された場合は、次の手順で作業します。

- ▶ 穴あけ加工治具BS15(写真F19)をコンダクターレールの端に差込み保持します。
- ▶ 絶縁ハウジングの背面にのみΦ6.5mmの穴を 開けます(図S11)。穴あけ加工治具の"B"を使用 します。
- ▶ レール横方向全体にΦ3mmの穴を開けます(図 S11)。穴あけ加工治具の"D"を使用します。供 給されたロッキングピン(径3mm、長さ12mm)を 打込みます。

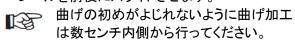
穴あけ治具の突き出た角部をコンダク ターレール導体に差込み、ロッキングピン の打込みの時にガイドとして使用します。


▶ 端末キャップをカチッと音がするまで押込みます。



ロッキングピンは端末キャップで完全におおわれていることを確認してください。

16 コンダクターレールの曲げ


曲げツールBVU15(図S12)により現場でコンダクターレールを垂直または水平に曲げることができます。フィラーロッドは別途ご発注ください。

作業手順:

- ▶ 曲げの準備のため、平面に必要な半径の円弧 を描きます。
- ▶ 施工図からコンダクターレールの曲げ寸法(展開した長さ)を決め、コンダクターレールに印をつけます。
- ▶ 曲げ寸法より約0.5m長いところでコンダクターレールを切断します。
- ▶ コンダクターレールにフィラーロッドを挿入します。
- ▶ 曲げツールの調整ハンドルを回転させて上にあげ、曲げツールの対応する溝にフィラーロッドを入れたコンダクターレールを挿入します。
- ▶ 調整ハンドルを回転させ少し力を加えた状態で、 レールを前後にスライドさせます。

- ▶ 必要な曲げになるまで作業を繰返します。
- ▶ フィラーロッドを取外します。
- ▶ 曲げ寸法のところでコンダクターレールを切断します。接続に支障がないように曲げ半径が700mm未満の場合は曲げ部の後約100mmの直線部を設けてください(図S13)。

17 集電子

集電子の接続ケーブルは高柔軟性のものを使用し、あらゆる集電子の動きに干渉しないように取付けてください。

17.1 集電子KSFU・KES用の取付

▶ 集電子の接触面はコンダクターレールの長手方向に正しく並行で、横に揃うように取付けてください。 集電子の取付穴と集電子取付面とコンダクターレールの接触面の高さは表4を参照ください。

表4:取付穴と取付高さ

集電子形式	取付穴	取付高さ[mm]	許容差[mm]
KSFU25	2 х Ф7	88	<u>+</u> 15
KESR	2 х Ф7	88	<u>+</u> 15
KESL	2 х Ф7	105	±30

17.2 集電子KST15~KDSTLU120の取付

- ▶ 集電子用ブラケットを正しい角度で取付けます。 集電子用ブラケット中心から接触面までの取付 高さは表5を参照ください(図S14)。
- ▶ 集電子を牽引アームの角棒に挿入し揃えて締付けます。

接地用集電子は集電子ブラケットの三角に削ってあるところに取付けます。

表5:取付高さ

集電子形式	取付高さ[mm]	許容差[mm]
KST15·KST40·KST60	65	<u>+</u> 20
KDST30·KDST80·KDST120	65	±20
KSTL15·KSTL40·KSTL60	85	<u>+</u> 40
KDSTL30·KDSTL80·KDSTL120	85	±40
KSTLU15·KSTLU40·KSTLU60	85	$\pm 20/\pm 40^{(1)}$
KDSTLU30·KDSTLU80·KDSTLU120	85	$\pm 20/\pm 40^{(1)}$
KST30·KST55·KSTU30·KSTU55	85	±20
KSTL30·KSTL55·KSTLU30·KSTLU55	95	±30

(1) 左の値は上下・右の値は水平、トランスファーファンネルの領域は上下・水平とも±15

18 立上げ

正しく取付作業を行った後、次の点を考慮して試運転を行ってください。

- 最初の試運転はゆっくりとした速度で行う。
- 集電子は振動がなくコンダクターレール内を走行すること。
- ブラシ部でスパークしないこと(コンダクターレール表面が汚れていたり酸化したりしている場合にスパークが起こります。このような場合は接点面を清掃してください)。ジョイントのない短いレール長さの場合、コンダクターレールの端まで確認してください。
- 特にトランスファーガイドやトランスファーファンネルのところでは集電子は異常なく出入りすること。
- トランスファーファンネルは専用の集電子と一緒に使用してください。専用の集電子はストロークや振れの制限を増やしています。トランスファーファンネルの外ではラバースプリングにより集電子(ブラシ)の上端がコンダクターレールに平行になるように保たれます。

19 保守点検

定期的に下記の保守点検を行うことをおすすめします。

19.1 コンダクターレールの点検

- 4週間ごとにコンダクターレールの伸縮やスパーク痕がないか目視点検を行います。
- 特にジョイント・トランスファーガイドや断路区画のところではブラシの粉塵を取り除きます。
- 切り換えやリフトのトランスファーガイドの垂直・水平方向のずれは±2mm以下になっていること。
- 対向するトランスファーガイド間の最大空隙は下表以下になっていること。

トランスファーガイド形式	参考図	最大空隙
US15·USE15	図F18	6mm
US15T·USE15T·US15TS·USE15TS	図F12、F17	10mm

19.2 集電子の点検

- 2か月ごとまたは動作条件により必要な場合、次の点検を行います。
 - a) 機械的要素の確認 リンク、回転部やサポート部の動きに異常がないこと。機械的な消耗や破損がないこと。
 - b) 電気的要素の確認 ブラシの摩耗、接点部のねじの締付、ケーブルの固定を確認します。

集電子(ブラシ)は集電子のホルダーがコンダクターレールの絶縁ハウジングの下側や保護カバーをこすりすぎないよう早めに交換してください。

c) 接触圧力

バネばかりでコンダクターレールから集電子を引張り、接触圧力を確認します。接触圧力はブラシごとに、 集電子形式がKESR・KSFU25の場合約3.5N、集電子シリーズ形式がKST30~KSTU55の場合約5N、 集電子形式がKESLの場合約7N、集電子シリーズ形式がKST15~KDSTLU120の場合約9N。

ご使用の前にこの「取扱説明書」をよくお読みいただき、正しくご使用ください。

本書記載の商品の保証期間はお引渡し日から1年間です。

なお、ブラシなどの消耗部品は対象外とさせていただきます。

万一故障が起きた場合は、お引渡し日を特定の上、お申し出ください。

保証期間内は下記の場合を除き、無料修理対応させていただきます。

- (1)使用上の誤りおよび不当な修理や改造による故障および損傷
- (2)カタログ等に記載されている使用条件、環境の範囲を超えた使用による故障および損傷
- (3)施工上の不備に起因する故障や不具合
- (4)お買上げ後の取付場所の移設、輸送、落下などによる故障および損傷
- (5)火災、地震、水害、落雷、その他天災地変、異常電圧、指定外の使用電源(電圧・周波数)、公害、塩害、ガス害(硫化ガスなど)による故障および損傷
- (6)保守点検を行わないことによる故障および損傷

弊社納入品の不具合により誘発した損害(機械・装置の損害または損失、ならびに逸失利益など)は、いかなる場合も免責とさせていただきます。

商品改良のため、仕様・外観は予告なしに変更することがありますのでご了承ください。

ファーレ株式会社

ドイツ VAHLE 社 日本総代理店 極東貿易グループ

〒541-0046 大阪市中央区平野町 1-7-6 エストビル 4F

TEL: 06 6227 1117 FAX: 06 6227 1118 URL: http://www.vahle.jp/

Mail: info@vahle.jp