

Motor Powered Cable Reels

General

Contents	Page
General	3
Calculations	5
Determining the cable cross section	7
Type designation	9
Cable guides	11
Cable guides and guide rollers	13
Feed point funnel	14
Terminal box	15

Application

Cable reels with motor drives are used as a power supply for mobile consumers for automated winding of flexible power or control cables for the following areas:

- All forms of portal and swivel cranes
- Container bridges
- Stacking cranes
- Gantry cranes
- Construction cranes
- Loading facilities
- Magnet and grip cranes
- E-trains
- Transfer tables
- Forklifts
- Warehouses in sewage treatment plants
- Coating machines

Our cable reels comply with VDE and UVV standards.

Special uses

- Reels for installation on maritime ships or use in the tropics
- Reels used under aggressive operating conditions (e.g. acid baths, galvanizing plants)
- Reels for the distribution of measured current, signal current and high frequency transmissions
- Reels for the transfer of of optical signals (optical fibre)
- Reels for feeding liquid or gaseous media (hose reels)
- Reels for height variable tools or control boards on lifting equipment

Slip ring bodies

- VAHLE slip ring bodies are available in the following versions:
- Low voltage: Voltages ranging between 230 V and 500 V Amperages of 10 A to 1000 A)
- Medium voltage: Voltages ranging between 10 kV and 20 kV
 Amperage 240 A

Higher voltages available upon request The housing for the slip ring bodies are encapsulated to meet protection type IP 55 (higher protection types available upon request).

Contents	Page
Cable grips	
Cable support rollers	
Anchor shackles	17
Installation sequence	18
Reference systems	19
Reel installation example	22
Questionnaire	23

All slip-ring bodies may be equipped with stand heaters (standard for medium voltages) upon request. The installation of a heater is recommended for temperatures below - 25°C or where large temperature fluctuations are expected within a short period of time.

Special slip-ring bodies for profibus data transfer with 1.5 Mbit/s are also available.

Fibre optic cables are used for the transmission of all optic signals. The transmission between the rotating part (reel body) and the fixed part will then be performed using the fibre optic transmitter. This is adjusted to the length of the cable as well as the number of fibre optic cables.

A plug connector is used. The transmitter shall either be attached to the slip-ring body or is located in a housing, both in a heated room.

Drives

We offer the following drives

- Three-phase motor with magnetic coupling
- Three-phase motor with frequency converter
 - \cdot with constant torque
 - \cdot with adjustable torque
- Three-phase motor with integrated frequency converter
 - \cdot with constant torque
 - \cdot with adjustable torque
- Torque motor with/without external ventilator

All drives run in winding direction. The payout involves the pulling of the cable from the reel counter to the drive torque. The drive is suitable for all device speeds up to stopping. A brake stops the uncontrolled unwinding of the cable when the device is switched off. The drive can be electrically heated upon request.

General

Reel bodies

- Mono spiral winding bodies with spokes are available in welded and bolted versions. The bolted design can be set to the winding width and thus adjusted to different cable cross sections. The winding cross section is adjusted to the minimum bend radius for the cable.
- Cylindrical (random) winding reel bodies are made of galvanized steel.

Also available:

- Double spiral winding reel bodies for the parallel winding of two cables with the same cross section.
- 3-2-3 layered winding
- Cylindrical winding with spooling equipment

Payout

The cable payout as presented in the dimensional drawings. Payout direction changes can be made upon request at no added cost and a later time with no great effort.

Limit switch

In order to switch off the drive or hoist motors when unwinding the last or next-to-last cable winding, all reels come with an optional limit switch. The switching cams are set for a maximum of 5 A and 250 volts. The limit switch is located either in the slip-ring body housing or externally in its own housing (with a Nirosta chain as a drive). Alternatively other limit switches, proximity switches or feeds can be installed.

Surface protection

The reel body comes standard in a galvanized version. The slip-ring body housing and the drive unit have a primer and cover coating in RAL 7040. Other versions (e.g. hot-dip galvanized or stainless steel reel bodies) are available.

Operating Manual

Instructions for assembly and commissioning are included in every delivery.

Assembly

When attaching the motor-powered cable reel to the consumer, make sure that the assembly frames or the foot-mounted gears have a level surface. In order to guarantee the smooth winding up and down the reel needs to be aligned on two sides, i.e. the reel axis needs to be horizontal and perpendicular to the running direction.

The heat exhaust from the motor drive needs to flow upwards and may not be hindered by protective hoods or other devices.

The cables need to be free from twisting - while accounting for the safety winding(s) for the strain relief - on the reel body. Expert staff shall install the electrical connections to the slip rings and the feed points in compliance with regulations.

After successful connection of the drive motor, the reel is ready for operation. The drive motor needs to be connected so that the reel rotates in the wind up direction. The payout direction is marked with an arrow.

Accident protection measures.

In accordance with EC directive 2006/42/EC, we wish to indicate that rotating parts such as reels need to be secured to prevent potential accidents.

Warranty

We provide guarantees in compliance with the General Terms and Conditions for Products and Services of the Electrical Industry.

Accessories (from page 11)

- Guide rollers with and without tension control
- Sheave guides with and without top guide rollers
- Deflection and guide rollers
- Feed point
- Medium voltage terminal box (special versions available, e.g. with fibre optic cable)
- Cable grips
- Cable support rollers and anchor shackles

Calculations

Calculating the necessary cable cross section

- 1. Determination of ampacity and cable cross section
- 2. Control of voltage drop
- 3. Selection of cables

1. Determination of ampacity and cable cross section

The nominal current (I_{N}) of the individual motors are summarized with a reduction factor $(f_{ED}, f_{T}, f_{1}, f_{2})$ to an equivalent continuous current (I_{D}) . The following calculation shall also be performed repeatedly if necessary.

$$I_{\rm D} = \frac{I_{\rm N}}{f_{\rm ED} \, \mathrm{x} \, \mathrm{f}_{\rm r} \, \mathrm{x} \, \mathrm{f}_{\rm 1} \, \mathrm{x} \, \mathrm{f}_{\rm 2}} \qquad [A]$$

$\mathbf{I}_{\!\scriptscriptstyle N}\!\!:\!\mathbf{Recommendations}$ for determining the nominal current

Estimated example for crane installations:

Sum up of the nominal currents for two motors with the stronges output.

$$I_{N} = I_{N1} + I_{N2} + I_{G}$$
 [A]

If only one power output is known:

 $I_{D} = \frac{P \times 1000}{\sqrt{3} \times U \times (\cos \varphi \times \eta)} \times f_{G}$ [A]

P = Power[kW]

U = Voltage [V]

 $\cos \phi \bullet \eta = 0.8$ estimated

- $f_{G} = 1.0$ when individual power rating is known
- f_G = 0.9 only total power is known
- f_{ED} = Reduction factors for intermittent service are listed on page 7
- f_τ = Reduction factor for increased ambient temperature For ambient temperatures above 30 °C, the reduction factors on page 7 shall apply.
- f₁ = Reduction factor for multi-layer winding for ampacities based on the type of reel as per page 7. They are valid for permanently wound up cables. For cables that are only temporarily fully wound, reduced factors can be applied.
- f₂ = Reduction factor for multilayer coiling The factors on page 8 should be taken into account for multilayer cables. They apply for diameters of up to 10 mm²

2. Check of voltage drop

Rough calculation for determining the voltage drop ΔU :

$\Delta U = \sqrt{2}$	Зх	$L \times I_A \left(\frac{Z}{1000}\right)$	[V]
L	=	total cable lenght	[m]
I _A	=	starting current	[A]
Z	=	Impedance	[Ω/km]
for $\cos\phi$	=	0.6 from Table 1 (P	age 7)
ΔU	=	recommended ΔU	\$ 5%

I_A: Calculation of start-up current

The order of the motors sizes does not depend according to their power output but the level of start-up current, i.e.: Squirrel cage motor with less power output but high start-up current is placed ahead of a slip-ring motor with higher performance.

Recommendation:

$\boldsymbol{I}_{A} = \boldsymbol{I}_{A1} + \boldsymbol{I}_{N2}$	[A]
I_{A1} : 1. Motor with highest start-up I_{N2} : 2. Motor with highest nominal Note:	
$I_A = X \cdot I_N$	[A]

Squirrel cage motors:	X ≈ 6
Slip-ring motors:	X ≈ 2
Frequency regulated drives:	X ≈ 1.1

3. Selection of cables

Reel-capable cables in accordance with DIN/VDE 0298 shall be used. In doing so the smallest permissible bend radii (page 8) need to be taken into account.

For reasons of mechanical strength, the diameter of control cables should not be less than 1,5 mm². We recommend to include spare conductors for multicore control cables.

Calculating the necessary cable diameter

Nominal cross	Ambient temperature 30 °C	Factors for in	7 [0///m]			
section [mm ²]	continuous amp. [A]	60%	40%	25%	15%	Z [Ω/km]
1.5	23	1.00	1.00	1.00	1.00	8.770
2.5	30	1.00	1.00	1.04	1.07	5.310
4	41	1.00	1.03	1.05	1.19	3.360
6	53	1.00	1.04	1.13	1.27	2.250
10	74	1.03	1.09	1.21	1.44	1.370
16	99	1.07	1.16	1.34	1.62	0.888
25	131	1.10	1.23	1.46	1.79	0.547
35	162	1.13	1.28	1.53	1.90	0.443
50	202	1.16	1.34	1.62	2.03	0.344
70	250	1.18	1.38	1.69	2.13	0.258
95	301	1.20	1.42	1.74	2.21	0.205
120	352	1.21	1.44	1.78	2.26	0.174
150	404	1.22	1.46	1.81	2.30	0.154
185	461	1.23	1.48	1.82	2.32	0.136
240	540	1.23	1.49	1.85	2.36	0.119

Table 1: Continuous ampacity of cables NSH ... and NTS ... for straight, open air installation.Max. possible operating temperature of the conductor 90 °C.

Table 2: Multiplier for ambient temperature

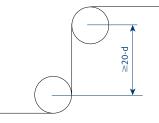
Ambient temperature [°C]	25	30	35	40	45	50	55	60	65	70
Reduction factor f _r	1.05	1.00	0.95	0.89	0.84	0.77	0.71	0.63	0.55	0.45

Table 3: Multiplier for multilayer coiling.

Number of complete layers LZ on the reel	1 ⁽¹⁾	2	3	4
Reduction factor f _r	0.80	0.61	0.49	0.42

Table 4: Multiplier for multilayer coiling up to 10 mm²

Number of conductor	5	7	10	14	19	24	40	61
Correction factor f ₂	0.75	0.65	0.55	0.50	0.45	0.40	0.35	0.30


Table 5: Minimum bending radii

Cable type	Nominal voltage	es of up to 0.6/1	kV	Nominal voltage of over 0.6/1 kV	Comment
Flexible cables	cross section of or thickness of				
	Over 8 to 12	Over 12 to 20	Over 20		
Fixed installation	3 x d	4 x d	4 x d	6 x d	If cable types can be used for
Free movement	4 x d	5 x d	5 x d	10 x d	several applications contact the manufacturer.
For entry	4 x d	5 x d	5 x d	10 x d	manufacturei.
For positive guidance (1)	5 x d	5 x d	6 x d	12 x d	
Guide roller	7.5 x d	7.5 x d	7.5 x d	15 x d	

The smallest permissible bending radius is $6 \times d$ for PUR-HF cables 0.6/1 kV with positive guidance like reel operation.

The straight lengths between two bends with an s-shaped cable guide or cable guide to another level must be at least 20 times the cable diameter.

Subject to technical advancement

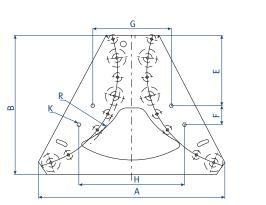
1) with reeling operation

²⁾ The suitability for this operating mode needs to be assured through special structural characteristics.

Type designation

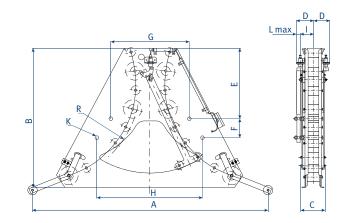
	Motor cable reels with magnetic coupling								
	LTM LTM LTM	300 S 530 N 15/40 H				 	R1 95 128	/	1,8 5 88
Cable reels with magnetic coupling drive									
Random winding (inner diameter of the reel in millimetres)									
Spiral winding (inner diameter / exterior diameter in decimetres)									
S = Low voltage with vertical payout S = Low voltage with horizontal payout H = Medium voltage									
Number of poles for slip ring body									
M = Brass slip ring K = Copper slip ring									
Slip ring rating in amps (100% ED)									
Gear sizes: bevel – helical gear unit 1 = R1 Flat spur gear = 95 + 96 bevel – helical gear unit = 48 - 168									
Magnetic coupling sizes									

Type designation


Motor cable reels with frequency converter drive

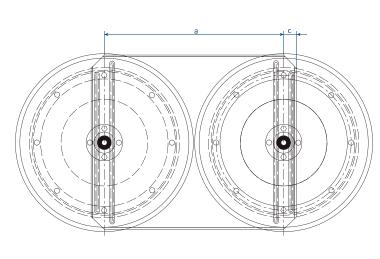
	LT 420 LT 530 LT 15/40	S 24 N 4 D H 4	M 36 M 60 K 240	-	68 88 128	/ FMK / FK / FP	4 4 6	G J M -S
Cable reels with frequency converter drive								
Number of poles for slip ring body								
M = Brass slip ring K = Copper slip ring								
Slip ring rating in amps (100% ED)								
Gear sizes:								
 FMK = Frequency converter with constant torque installed directly to th FMP = Frequency converter with variable torque installed directly to th FK = Frequency converter with constant torque FP = Frequency converter with variable torque 								
Number of poles of the motor								
Motor size								
S = Frequency converter from Siemens Sinamics								

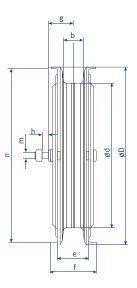
Cable guides


Guide roller assemblies

monospiral wrap For voltages up to 1000 volt and payout in two directions For voltages exceeding 1000 volt: r min. = 15 x cable cross section

Туре	e	≈kg	А	В	С	D	E	F	G	Н	К	R	max. LTG ø	Order no.
R 6	5	85	1140	860	145	95	360	125	430	598	M 16	600	55	924 994
R 9)	150	1595	1200	180	130	606	164	670	900	M 20	900	75	924 995
R 12	2	250	2100	1660	210	130	560	500	740	1200	M 20	1200	83	924 996

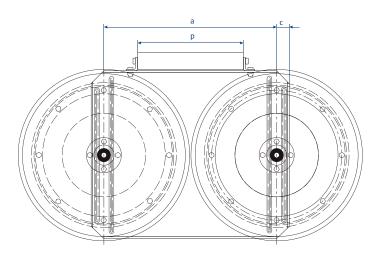

Guide roller with tension control

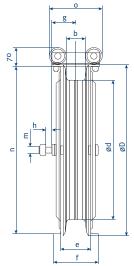

Туре	≈kg	A	В	С	D	E	F	G	н	I.	К	R	max. LTG ø	Order no. with position switch	Order no. without posi- tion switch
RZ 6	95	1700	930	185	123	360	125	430	598	92.5	M 16	600	55	926 576	924 742
RZ 9	160	2175	1240	220	140	606	164	670	900	111	M 20	900	75/601	925 073	925 002
RZ 12	260	2600	1710	220	140	560	500	740	1200	111	M 20	1200	83/801	926 573	925 003

Sheave guide

Sheave guide SU

The SU sheave guide is used for spiral winding reels. It serves to deflect the cable of the cable reel located above and to bypass the feed point.

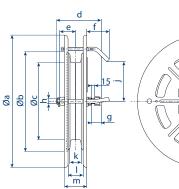


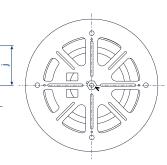


Туре	Weight kg.	a	b	С	ø d	ØD	е	f	g	h	m	n	0	р	max. LTG ø	Order no.
SU 1	48	455	70	32.5	350	450	114	170	85	50	M 24	445	180	315	22	901 635
SU 2	76	655	70	47.5	503	650	114	170	85	50	M 24	640	180	400	32	901 636
SU 3	90	785	70	80	663	780	114	170	85	50	M 24	770	180	500	39	901 637
SU 4	120	905	75	80	783	900	114	170	85	50	M 24	890	180	600	50	901 638

Sheave guide SU-R

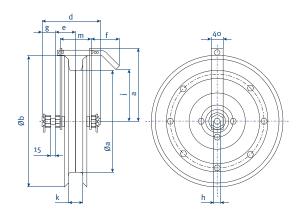
The SU-R sheave guide with additional top guide roller is used in cross rollers for cylindrical winding reels. It serves to deflect the cable of the cable reel located above and to bypass the feedpoint funnel. The installation height of the drum to the guide needs to provide for a maximum diagonal pull of 3° to allows a smooth winding of the cables.




Туре	Weight kg.	а	b	С	ø d	ØD	е	f	g	h	m	n	0	р	max. LTG ø	Order no.
SU-R1	53	455	70	32.5	350	450	114	170	85	50	M 24	445	180	315	22	901 630
SU-R 2	84	655	70	47.5	503	650	114	170	85	50	M 24	640	180	400	32	901 631
SU-R 3	105	785	70	80	663	780	114	170	85	50	M 24	770	180	500	39	901 632
SU-R4	140	905	75	80	783	900	114	170	85	50	M 24	890	180	600	50	901 633

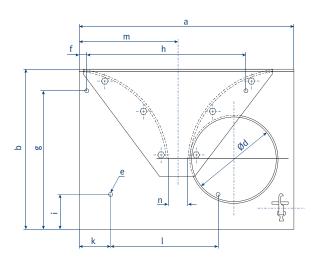
Deflection and guiding rollers

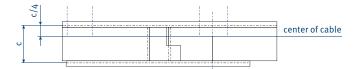
Deflection and guide rollers are used if the cable payout cannot be made directly from the reel.


the roller cross section needs to be at least 15 times the cable cross section

URN series

Туре	Weight kg.	øa	øb	øc	d	е	f	g	h	j	k	l	m	Order no.
VURN 350	23	600	450	350	195	60	99	42	M 20	180	50	58	98	970 421
VURN 500	42	800	650	530	240	84	85	57	M30	280	50	82	112	970 422
VURN 660	52	900	780	660	240	86	75	55	M30	344	70	90	120	970 423

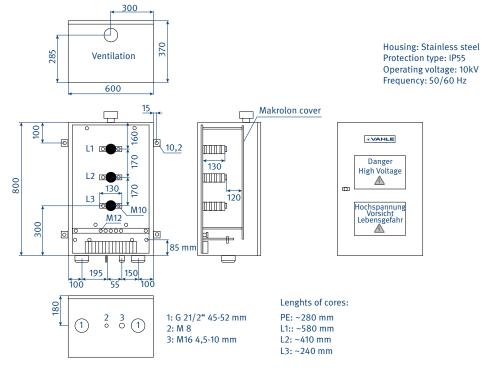



LRN series

Туре	Weight kg.	øa	øb	øc	d	е	f	g	h	j	k	l	m	Order no.
LRN 350	16	253	450	350	183	70	97	45	M 24	180	45	-	105	970 424
LRN 500	24	360	650	530	240	82	88	59	M 30	280	50	-	116	970 425

Feed point funnel

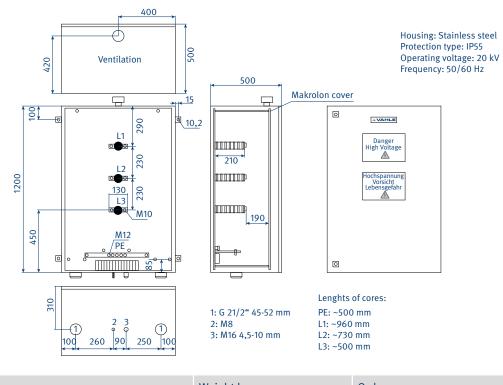
For voltages up to 1000 volt and cable payout in two directions for medium travel speed and frequent traveling of midpoint.



Туре	Weight kg.	а	b	с	d/r	е	f	g	h	1	k	t	m	n	max. LTG ø	Order no.
ETZ 3	15	650	530	106	275	14	40	405	400	220	120	300	270	60	34	921 380
ETZ 4	28	900	700	146	400	18	40	550	740	220	210	400	410	80	50	921 390
ETZ 5	52	1220	900	208	500	18	40	780	900	220	180	600	480	100	62	921 400
ETZ 7	100	1760	1200	208	700	18	200	1080	1100	220	350	800	750	100	80 ~60 ⁽¹⁾	921 410
ETZ 9	130	2070	1475	216	900	22	125	1325	1820	275	1250	695	960	120	90 ~70 ⁽¹⁾	921 720

Terminal box

Terminal box 10 kV

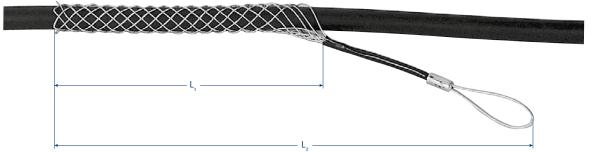

Protection type IP 54 Stainless steel housing

Туре	Weight kg.	Order no.
KKU-10K-XXXX-UU-E-0000-P55-G683-0755320	50	970 579

Terminal box 20 kV

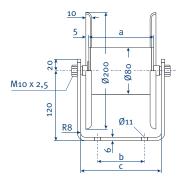
Protection type IP 54 Stainless steel housing

Туре	Weight kg.	Order no.
KKU-20K-XXXX-UU-E-0000-P55-G8X3-0755330	75	970 580


Cable grips

for Ø 18 mm bolts

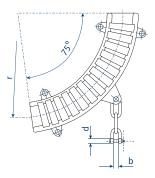
with 2 gromments, open on the eye side, sleeve end without soldering point

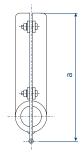


Туре	maximum permitted strain ⁽¹⁾ kg	for cable cross section	Order no.
VLZ 1	930	15-20	901 620
VLZ 2	1165	20-30	901 621
VLZ 3	1400	30-40	901 622
VLZ 4	1630	40-50	901 923

Туре	maximum permitted strain ⁽¹⁾ kg	for cable cross section	length of wire mesh measure L_2	Mesh length dimension L ₁	Order no.
VLZK 6	60	4 to 7	100	275	900 391
VLZK 9	110	7 to 9	120	290	900 392
VLZK 12	130	9 to 12	135	340	900 393
VLZK 15	210	12 to 15	180	390	900 394
VLZK 20	260	15 to 20	220	450	900 395
VLZK 25	260	20 to 25	275	510	900 396
VLZK 30	400	25 to 30	350	610	900 397
VLZK 40	580	30 to 40	370	660	900 398

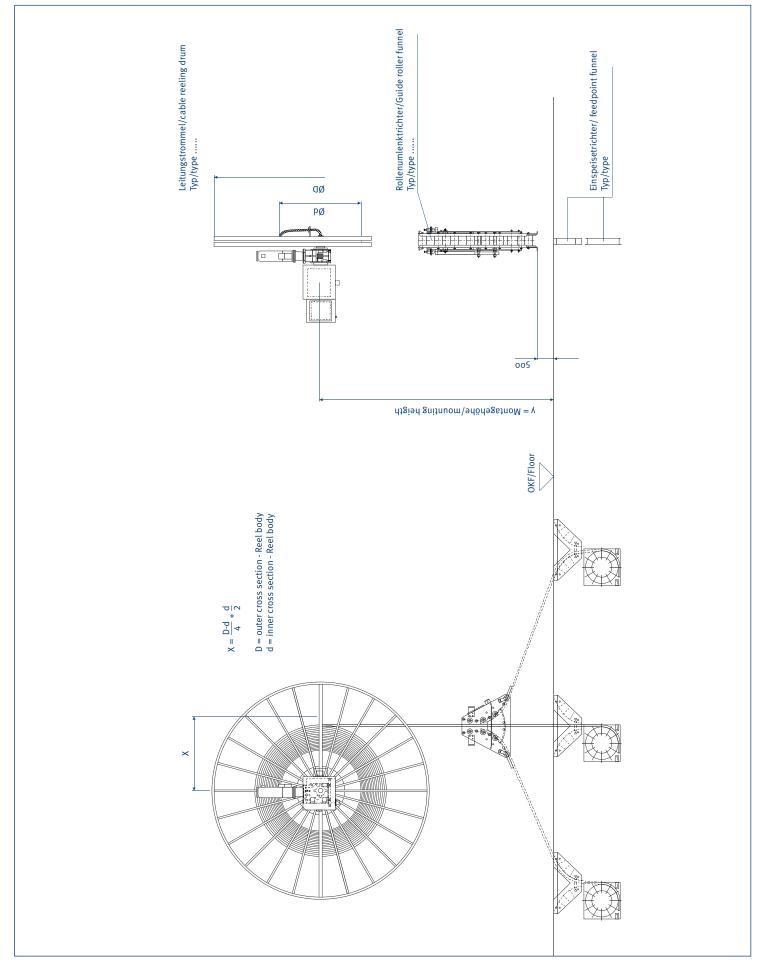
Cable support rollers


Туре	Weight kg.	Support	a	b	с	Order no.
TR 80/110 B 200	2.25		110	-	130	924 450
TR 80/300 B 200	3.25	Without	300	-	320	924 460
TR 80/500 B 200	4.50		500	-	520	924 470
TR 80/110 B 200 H	3.50		110	80	130	924 480
TR 80/300 B 200 H	5.15	with	300	250	320	924 490
TR 80/500 B 200 H	6.90		500	400	520	924 500


Turnover anchor clamp

For voltages of up to 1000 volt, for cable cable payout in 1 or 2 directions, for low speeds.

Application:


Mainly used in connection with plug & socket service or when a vertical seeding connection from underneath the cable tray is impossible.

Туре	Weight kg.	Cable ø	R	а	d	b	Order no.
LS 1	1.6	- 21.5	100	205	10	14	921 420
LS 2	2.5	>21.5 - 28.0	130	225	10	14	921 430
LS 3	3.5	>28.0 - 36.5	170	265	12	17	921 440
LS 4	5.5	>36.5 - 48.0	220	300	12	17	921 450

Installation sequence Cable reel with guide roller and feedpoint funnel.

Reference systems

Container crane at Bremerhaven international harbour

Frequency regulated drive with strain regulation including control. Slip-ring body 10 KV with12 channel LWL-rotation transmission

Reel bodies: Winding lengths: Cable: Operating speed:

Installation height:

7.4 m 500 m NTSCGEWÖU 6 KV, 3 x 95 + 2 x 50/3 + 18 LWL 55 m/min. 20 m

In use since 2002

Container crane at Duisburg Rhine Harbour

Frequency regulated drive with strain regulation including control. Slip-ring body 10 KV with 6 channel LWL-rotation transmission

Reel bodies:5.3 mWinding lengths:500 mCable:NTSCGEWÖU
10 KV, 3 x 3,5 + 2 x 25/2 + 6 LWLOperating speed:120 m/min.Installation height:6 m

In use since 2004

Reference systems

Container crane in Hamburg harbour

Frequency regulated drive with strain regulation including control. Slip-ring body 10 KV with 18 channel LWL-rotation transmission

Reel bodies: Winding lengths: Cable: Operating speed: Installation height: 7.2 m 650 m NTSCGEWÖU 10 KV, 3 x 50 + 2 x 25/2 + 18 LWL 45 m/min. 22 m

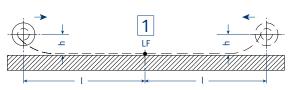
In use since 2004

Container crane in Mediterranean harbour Ashod/Israel

Frequency regulated drive with strain regulation including control. Slip-ring body 10 KV with 6 channel LWL-rotation transmission

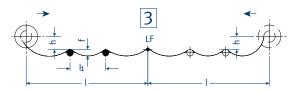
Reel bodies:	6.4 m
Winding width:	Adjustable
Winding lengths:	400 m
Cable:	NTSCGEWÖU
	6 KV, 3 x 70 + 2 x 25/+6 LWL
Operating speed:	45 m/min.
Installation height:	18.5 m

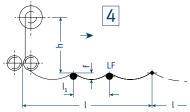
In use since 2004



Notes		
	• • • • • •	 • • • • • • •
• • • • • • • • •	• • • • • •	 • • • • • • •
	• • • • • •	
	• • • • • •	 • • • • • • •
• • • • • • • • •	• • • • • •	 • • • • • • •
	• • • • • •	 • • • • • •
	• • • • • •	 • • • • • • •
	• • • • • •	
		 • • • • • •
• • • • • • • • • •	• • • • • •	 • • • • • • •
• • • • • • • • •		

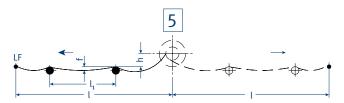
Reel installation examples


Reel on moving equipment

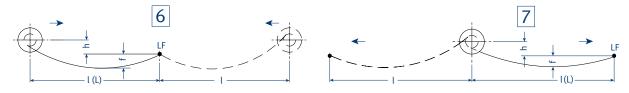

Cable tray on the ground or on a continuous tray. Cable payout horizontally in one or two directions.

Reel on moving equipment

Cable storage on supports ($l_1 \le 1 \text{ m}$), or on rolls or round smooth supports ($l_1 = 1 \text{ bis } 3 \text{ m}$). Cable payout horizontally in one or two directions on supports.



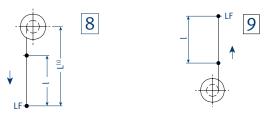
2


Reel stationary

(Cable fixation point on moving equipment), cable payout horizontally in one two directions on rolls or smooth supports (l, \leq 3 m).

Reel on moving equipment (6) or reel stationary (7) - (cable fix point at moving equipment)

Free cable payout horizontally in one or two directions. If the hanging cable length "L" is greater than "I", then "L" will be the determinative for sag "f" for the the payout in one direction.



Legend to drawings (Examples 1-7)

Lifting operation

- l = maximum operational cable lengths [m] (for cable payout in two directions = half travel lengths)
- L = maximum cable length [m] between reel and cable fix point

Cable payout vertical or straight downwards (8) Cable payout vertical or straight upwards (9)

h = Installation height = Distance from cable tray or

- l1 = Rolls or support distance [m]

Legend to Drawings (Examples 8 and 9)

- l = operational lenght of cable [m]
- L = Maximum length between reel and end of cable [m]. Any additional weight (e.g. control switch) needs to be taken into account.
- LF = Cable fix point

Questionnaire

1.	For what type of moving equipment is the reel?		
	(Dimensional drawings of equipment and application are extremely valuable)		
	1.1 Installation site	indoor 🗆	outdoor 🗆
	1.2 Temperature conditions	– <u> </u> °C	+°C
	1.3 Duty factor (time on) of full operating load		% DF
	1.4 Environmental conditions		
2.	Type of application (see page 6)	example	
	2.1 Reel type	random wrap 🗆	monospiral wrap 🗆
3.	Mounting height from center of reel to cable pickup surface		m
4.	Working travel of equipment in motion		m
5.	Cable Payout	one-way 🗆	two-way 🗆
6.	Operational length of active cable	l =m	
	(Midway feed-point cuts the length of cable needed in half)		
	6.1 For vertical lift (see page 4, example 8)	l =m	L =m
	6.2 Operated from a remote point to raise and lower cable at a controlled spe	eed yes 🗆	no□
	6.2.1 Loads in addition to cable weight (pendant controls or receptacles)kg	orlbs
7.0	Choosen Cable (Number of copper conductors x wire size)x	mm ²	or#AWG
	7.1 Weight of cable	kg/m	orlbs/ft.
	7.2 Diameter of cable	<u> </u>	or <u>i</u> n.
8. F	ull operating load or maximum horsepower of equipment	kW	orHP
	8.1 Nom. amperage (nominal current – IN)		A
	8.1.1 Start-up amperage (start-up current – IA)		A
	8.2 Voltage rating / frequency	V	Hz
9.	What percentage of the total installed ampacity will work simultaneously		%
10.	Number of phase collector rings required		pcs.
	(Our cable reel slipring assemblies always include one non-insulated ground)		
11.	How many cycles of the equipment per hour?		cycles
12.	Operating hours per day		hours.
13.	Speed of travel or lift		m/min.
14.	Shortest starting time		sec.
15.	Acceleration	sec.	m/sec. ²
16.	Details for reel drive motor		
	16.1 Voltage / frequency	V	Hz
	16.2 Duty cycle		% DF
	16.3 Is it possible to control reel drive motor from the host carrier	yes 🗆	no 🗆
17.	Limit switch for travel or lift required	yes 🗆	no 🗆

Remarks:_____

Scope of delivery and services

1	Open conductor systems	
	Open conductor systems	1a
2	Insulated conductor systems	
	U10	2a
	FABA 100	2b
	U15, U25, U35	2c
	U20, U30, U40	2d
3	Compact conductor systems	
	VKS 10	3a
	VKS - VKL	3b
	VMT	3c
4	Enclosed conductor systems	
	KBSL - KSL	4a
	КВН	4b
	МКН	4c
	LSV - LSVG	4d
5	Contactless power supply	
	Contactless power supply (CPS®)	5a
6	Data transmission	
	VAHLE Powercom [®]	6a
	Slotted Microwave Guide (SMG)	6b
7	Positioning systems	
	VAHLE APOS®	7a
	VAHLE APOS [®] Optic	7b
8	Festoon systems and cables	
	Festoon systems for O-tracks	8a
	Festoon systems for flatform cables on I-tracks	8b
	Festoon systems for round cables on I-tracks	8c
	Festoon systems for ◇-tracks	8d
_	Cables	8e
9	Reels	
	Spring-operated cable reels	9a
	Motor-powered cable reels	9b
10	Other	4.0
	Battery charging systems	10a
	Heavy enclosed conductor systems	10b
	Tender	10c
	Contact wire	10d
11	Automotive Handling	44.
	Control systems BOK	11a
		11b
	semblies / Commissioning	
эþ	are parts / Maintenance service	

CE DQS certified in accordance with DIN EN ISO 9001:2008 OHSAS 18001 (Reg.No. 003140 QM OH)

Catalog no.